Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Year range
1.
TrAC Trends in Analytical Chemistry ; : 116767, 2022.
Article in English | ScienceDirect | ID: covidwho-2031715

ABSTRACT

Aptamers are single-stranded DNA or RNA oligonucleotides that can selectively bind to a specific target. They are generally obtained by SELEX, but the procedure is challenging and time-consuming. Moreover, the identified aptamers tend to be insufficient in stability, specificity, and affinity. Thus, only a handful of aptamers have entered the practical use stage. Recently, computational approaches have demonstrated a significant capacity to assist in the discovery of high-performance aptamers. This review discusses the advances achieved in several aspects of computational tools in this field, as well as the new progress in machine learning and deep learning, which are used in aptamer identification and optimization. To illustrate these computationally aided processes, aptamers selection against SARS-CoV-2 is discussed in detail as a case study. We hope that this review will aid and motivate researchers to develop and utilize more computational techniques to discover ideal aptamers effectively.

2.
Atmospheric Chemistry and Physics ; 21(6):4599-4614, 2021.
Article in English | ProQuest Central | ID: covidwho-1150872

ABSTRACT

To prevent the spread of the COVID-19 epidemic, restrictions such as “lockdowns” were conducted globally, which led to a significant reduction in fossil fuel emissions, especially in urban areas. However, CO2 concentrations in urban areas are affected by many factors, such as weather, biological sinks and background CO2 fluctuations. Thus, it is difficult to directly observe the CO2 reductions from sparse ground observations. Here, we focus on urban ground transportation emissions, which were dramatically affected by the restrictions, to determine the reduction signals. We conducted six series of on-road CO2 observations in Beijing using mobile platforms before (BC), during (DC) and after (AC) the implementation of COVID-19 restrictions. To reduce the impacts of weather conditions and background fluctuations, we analyze vehicle trips with the most similar weather conditions possible and calculated the enhancement metric, which is the difference between the on-road CO2 concentration and the “urban background” CO2 concentration measured at the tower of the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences. The results showed that the DC CO2 enhancement was decreased by 41 (±1.3) parts per million (ppm) and 26 (±6.2) ppm compared to those for the BC and AC trips, respectively. Detailed analysis showed that, during COVID-19 restrictions, there was no difference between weekdays and weekends during working hours (09:00–17:00 local standard time;LST). The enhancements during rush hours (07:00–09:00 and 17:00–20:00 LST) were almost twice those during working hours, indicating that emissions during rush hours were much higher. For DC and BC, the enhancement reductions during rush hours were much larger than those during working hours. Our findings showed a clear CO2 concentration decrease during COVID-19 restrictions, which is consistent with the CO2 emissions reductions due to the pandemic. The enhancement method used in this study is an effective method to reduce the impacts of weather and background fluctuations. Low-cost sensors, which are inexpensive and convenient, could play an important role in further on-road and other urban observations.

SELECTION OF CITATIONS
SEARCH DETAIL